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Abstract
We present anab initio formulation of the interlayer exchange coupling (IEC)
between two magnetic slabs embedded in a non-magnetic spacer wherein the
spacer and the magnetic slabs as well as their interfaces may be random. This
approach is based on the spin-polarized surface Green function technique within
the tight-binding linear muffin-tin orbital method, the Lloyd formulation of the
IEC, and the coherent potential approximation using the vertex-cancellation
theorem. The periods, amplitudes, and phases are studied in terms of discrete
Fourier transformations. Numerical results illustrating the theory are presented.

1. Introduction

The interlayer exchange coupling (IEC) between magnetic layers separated by a non-magnetic
non-random spacer has recently been the subject of intensive theoretical studies, particularly
on theab initio level [1–3]. The origin of the periods of oscillation of the IEC is now well
understood. New theoretical insight can be obtained by addressing the subtle problem of
the variation of periods, amplitudes, and phases of the oscillations with the composition of
magnetic and spacer alloy layers. Due to unavoidable interdiffusion,substitutional randomness
is likely to occur at interfaces between magnetic and spacer layers. Thus, it is important to
investigate the influence of disorder on the IEC.

It is the purpose of this paper to perform such a study on anab initio level. We employ
the Lloyd formulation of the IEC combined with a spin-polarized surface Green function
technique based on the tight-binding linear muffin-tin orbital (TB-LMTO) method [3]. The
use of a Green function formulation of the IEC is essential for describing randomness within the
coherent potential approximation (CPA) which is known to reproduce compositional trends
in random alloys reliably. The calculations are significantly simplified by employing the
vertex-cancellation theorem [4].
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2. Theory

Our model consists of two, generally different, semi-infinite magnetic subsystems denoted by
L andR, each containingM magnetic layers on the top of a semi-infinite non-magnetic base
and separated by a finite spacer slabC of varying thicknessN . A special case is a model of
two semi-infinite magnetic slabs sandwiching a finite spacer. Both the magnetic and spacer
layers are assumed to be binary alloys of arbitrary composition. We also assume a possible
interface roughness or interdiffusion at the interfaces between the magnetic and spacer layers.
Further,ϑ is a relative angle between spin directions in the magnetic subsystemsL andR.

The exchange energȳEx is defined as̄Ex(ϑ) = �̄(ϑ) − �̄(0), where the overbar denotes
the configurational averaging and� is the grand canonical potential. The concept of principal
layers as used within the TB-LMTO method leads to a block-tridiagonal form of the structure
constants and of the inverse of the Green function [2, 3]. Considering as a perturbation the
interlayer coupling at theL/C and theC/R interfaces, which is independent of the thickness
of the magnetic slabs, and employing the partitioning technique with respect to the trace of the
logarithm of the Green function appearing in the expression for the grand canonical potential
[2, 3], it is possible to extract directly the term describing the magnetic coupling of interfaces.
The resulting expression for the configurationally averagedĒx(ϑ) is given by the following
expression [3, 5]:

Ēxϑ) = 1

πN‖
Im

∑
k‖

∫
C

tr ln

(
1 − 1 − cos(ϑ)

2
M(k‖, z)

)
dz (1)

where ‘tr’ denotes the trace over angular momentum indices, the energy integration is
performed over a contourC in the upper half of the complex energy plane starting below
the bottom of the valence band and ending at the Fermi energy, the sum runs overk‖-vectors
in the irreducible surface Brillouin zone, andN‖ is the corresponding unit surface area. The
quantityM(k‖, z) is defined as5

M = −
(
1 − S10Ḡ↑

LS01Ḡ↑
R

)−1
S10

(
Ḡ↑
L − Ḡ↓

L
) (

1 − S01Ḡ↓
RS10Ḡ↓

L
)−1

S01

(
Ḡ↑
R − Ḡ↓

R
)

(2)

where for simplicity the argumentsk‖ andz have been omitted. The quantitiesS01(k‖) and
S10(k‖) in equation (2) are the structure constants which couple neighbouring (principal)
layers,Ḡσ

X (k‖, z),X = L,R, is the configurationally averaged surface Green function of the
magnetic subsystem andσ denotes the spin index(σ = ↑, ↓). It should be noted that in
the presence of randomness the expression for the IEC is formally analogous to the case of a
non-random spacer [3] in the sense that the surface Green functions which enter equation (2)
are replaced by the corresponding configurational averages. The theoretical basis for this
simplification—which reduces computational times by almost two orders of magnitude—
relies on the ‘alloy force theorem’ [6] and on the ‘vertex-cancellation theorem’ [4]. The latter
theorem states that the vertex correction to the IEC due to randomness in the system is exactly
zero. Strictly speaking, this theorem is valid only in the limit of infinitesimal rotations of
the spin-quantization axis, but the numerical studies in [4] verified its validity even for large
anglesϑ . This is very much in the spirit of the force theorem. We refer the reader to a recent
review paper [7] for more details.

The present approach scales linearly with the thickness of both the magnetic slab and the
spacer layer. This makes possible the efficient evaluation of the IEC for a large set of spacer
thicknesses which, in turn, allows reliable extraction of periods, amplitudes, and phases from

5 This form is equivalent to that given in reference [3] after substitution back into equation (1). It factorizes the spin
asymmetry and it is directly related to the RKKY-like theories.
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calculated data. The theory determines periods, and, in particular, amplitudes and phases of
the oscillations from asymptotical expansions, i.e., for large spacer thicknesses. On the other
hand, experimental data are usually available for small spacer thicknesses limited to regions
with a possible pre-asymptotic behaviour. The advantage of the present approach lies in the
possibility of bridging the two regions and thus verifying the theoretical concepts employed
in the analysis of experiments.

Periods, amplitudes, and phases of the oscillations are found from a discrete Fourier
transformF(q) performed on a large enough set of values ofN2Ēx(N). The periods of
oscillationspi are then identified from the positionsqi of pronounced peaks of|F(q)| as
pi = 2π/qi , their amplitudesAi asAi = (2/n)|F(qi)|, wheren is the number of values of
N2Ēx(N) used in the Fourier analysis, and the phasesϕi from the relation

ϕi = π/2 − arctan[ImF(qi)/ReF(qi)].

Extensive numerical tests for model cases verified the reliability of this approach. In order to
exclude pre-asymptotic behaviour, the discrete Fourier transform is performed for values of
N2Ēx(N) corresponding typically toN = 20–80.

It should be noted that an alternative approach, namely an asymptotic analysis of the
IEC as commonly used in model studies [8], can also be generalized toab initio studies
as demonstrated recently [9] (see also [7]). Such an approach allows both faster evaluation
of corresponding Brillouin-zone integrals and, in particular, separation of contributions of
particular spanning vectors of spacer Fermi surfaces.

The effect of temperature on the periods and phases of the oscillations was found to
be negligible but can obscure an analysis of the oscillation amplitudes [8, 10]. Hence all
calculations are forT = 0 K. Throughout this paper we will assume for a simplicityϑ = π .

3. Case studies

For the reference system of fcc-Co/Cu/Co(001) trilayers the following subjects will be
discussed:

(i) the effect of interface roughness and interdiffusion on amplitudes of the oscillatory
exchange coupling [11];

(ii) the effect of alloying in the spacer on periods and amplitudes of the oscillatory exchange
coupling in metallic multilayers [5]; and

(iii) the dependence of amplitudes and phases of the oscillatory coupling on the composition
of ferromagnetic layers [12].

For numerical details concerning the evaluation of the IEC we refer the reader to reference [3].
Most of the results discussed in this paper refer to the model of two semi-infinite magnetic

slabs sandwiching a finite spacer. For this model the short-period oscillations (SPO) with the
period of p ≈ 2.53 monolayers (MLs) dominate [2, 3] and this simplifies the theoretical
analysis. In particular cases, however, the model of two Co(001) slabs each five monolayers
thick separated by a spacer will also be considered, for which both the SPO and LPO
(long-period oscillations) are present.

3.1. Interface roughness and interdiffusion

We wish to investigate the role of two general cases of imperfections frequently occurring at
interfaces of artificially prepared materials like magnetic multilayers, namely:
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(i) an interfacial roughness case modelled via randomly distributed large terraces of mono-
layer heights leading to fluctuations of the spacer thickness in both directions around an
ideal interface [13] with the probabilityr, and

(ii) an interfacial interdiffusion case, in which magnetic and spacer atoms are mixed randomly
with the probabilityx at the system interfaces, i.e., instead of ideally sharp Co/Cu
inter-faces we have two buried layers Co1−xCux/CoxCu1−x at each interface.

The IEC for the interface roughness model defined above can be obtained from the following
simple relation:

Ēx(N) =
∑

n

w(N − n)Ex(n). (3)

The deviations of the actual spacer thicknessn from its mean valueN are specified by the
probabilitiesw(N−n), wherew(0) = (1−2r)2 + 2r2, w(±1) = 2r(1−2r), w(±2) = r2, and
w(m) = 0 for |m| > 2. The convolution-like form of the relation betweenEx(n) andĒx(N)

implies that the amplitudes of oscillations with wavenumberq are reduced due to roughness
by a factorw̃(k) = (1 − 4r sin2(k/2))2, namely the Fourier transform of the probabilities
w(n). An obvious consequence of this result is an efficient suppression of the amplitude of
short-period oscillations with period close top = 2 MLs, e.g., as for the case of the SPO for
the Co/Cu/Co(001) system. In contrast, the LPO are influenced by interface roughness less
efficiently.

The results of calculations for the case of two semi-infinite Co slabs are summarized in
table 1. The following conclusions can be drawn:

(i) The effect of interfacial roughness on the coupling strength of the SPO is quite large and
the SPO are almost wiped out forr = 0.25. It should be noted that the relative suppression
of amplitudes of the SPO is not sensitive to the thickness of magnetic slabs (essentially
the same relative suppression was found also for the SPO for two Co(001) slabs in fcc-Cu
each five monolayers thick [11].

(ii) The effect of interfacial interdiffusion on the coupling strength is even more dramatic.
An appreciable suppression of the amplitudes of the SPO is visible already for 2%
interdiffusion and amounts to an order of magnitude for 10% interdiffusion.

(iii) The fact that the strong suppression of the amplitude of the SPO does not depend on
the Co slab thickness confirms the decisive role of the interface region. We have further
addressed this problem by performing calculations with 5% interdiffusion where one of
the interfaces was disordered while the other was kept ideal. The relative amplitude for
the SPO in the latter case was 0.62, i.e., almost two times larger in comparison with the
value 0.36 given in the table.

The present study clearly demonstrates the high sensitivity of the coupling strength with
respect to various kinds of interfacial imperfections and the decisive role of interface electron
scattering for the exchange oscillatory coupling and, in turn, indirectly also for the giant
magnetoresistance in metallic multilayers. The present study also shows that a detailed
knowledge of the quality of the system interfaces is needed when comparing theoretical and
experimental values of coupling strengths.

3.2. Alloying in spacer layers

The study of the effect of alloying in the spacer represents another powerful experimental and
theoretical tool [14–17] for verifying existing models of the IEC by continuously varying the
medium between the magnetic layers. We present numerical studies for an fcc-Cu spacer as
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Table 1. Relative amplitudesA(ν)/A(0)(ν = r, x) of the short-period oscillations for two
semi-infinite Co(001) subsystems sandwiching the Cu spacer. The values are given as functions
of the interface roughnessr and the interface interdiffusion concentrationx. The quantityA(0)

refers to the ideal Co/Cu interface(r = 0.0 orx = 0.0).

r A(r)/A(0) x A(x)/A(0)

0.0 1.0 0.0 1.0
0.05 0.66 0.02 0.69
0.1 0.40 0.05 0.36
0.25 0.01 0.1 0.12

alloyed with Ni or Zn or Au. This choice is motivated by the fact that alloying with Ni or Zn
alters the electron concentration and, consequently, modifies the topology of the alloy Fermi
surface which is closely related to the coupling periods in terms of Fermi surface spanning
vectors [8]. The changes in the coupling periods can then be viewed as a contraction (Ni) or
an expansion (Zn) of the alloy Fermi surface. In contrast, alloying of Cu with Au does not
alter the electron concentration. In all cases, however, the coupling amplitudes are expected to
be influenced by the presence of alloy disorder. Strictly speaking, in random alloys the Fermi
surface is not well defined. In particular cases, however, when the alloy Fermi energy lies in the
sp part of the spectrum above the d-band complex, alloy broadening is usually weak, therefore
causing only little smearing of the Fermi surface. As is obvious from equations (1) and (2), the
present Green function formulation does not rely upon the existence of the alloy Fermi surface.

Alloying shifts corresponding peaks of|F(q)| to higher values ofq and suppresses their
heights as illustrated in figure 1 for the case of five-monolayer-thick Co(001) slabs with an
fcc-Cu1−xNix spacer. The results for the concentration dependence of the periods of
oscillations for the chosen alloy spacers are summarized in figure 2. For an ideal Cu spacer
the SPO and the LPO are 2.53 MLs and 5.05 MLs, respectively. Alloying of Cu with Ni
decreases the electron concentration in the alloy and leads to a contraction of the alloy Fermi
surface. In terms of the RKKY formulation [8] this leads to an expansion of spanning vectors
corresponding to an fcc (001) layer orientation. Both the SPO and the LPO are reduced with
increasing Ni concentration but this reduction is more pronounced for the LPO. The present
results for the LPO agree qualitatively with the simplified calculations of reference [15] based
on an RKKY formulation and approximating the spanning vectors by a linear interpolation
between the bulk band structures of Cu and Ni. It is therefore interesting to compare the
present results with those performed within the same computational scheme but employing
the VCA (virtual-crystal approximation) instead of the CPA. The results for Cu75Ni25 are
shown in figure 2 as open circles. As one can see, in particular for the LPO the shift of the
coupling periods differs in the VCA from that in the CPA.

The opposite behaviour, namely a shift to larger periods and again rather pronounced
for the LPO, was found when alloying Cu with Zn, namely the case when the Fermi surface
expands. Note that the periods of oscillations for a Cu1−xZnx spacer increase faster withx
than they decrease in the case of Cu1−xNix . Finally, for a Cu1−xAux spacer, even for large
concentrations of Au (up to 50%), we observe a negligible concentration dependence of the
periods of oscillations which is consistent with the composition-independent average electron
number in these alloys as well as with available experimental data [16]. From figure 2 it is
obvious that the coupling periods obtained for a Cu0.5Au0.5 spacer by employing the CPA and
the VCA are virtually the same. It was demonstrated quite recently that the study of the IEC
with alloyed spacers can be used as an quantitative probe of complex Fermi surfaces such as
those which are hosts to electronic topological transitions in transition metal alloys [18].
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Figure 1. Composition dependence of the absolute values of a discrete Fourier transform ofĒx at
T = 0 K for two Co(001) slabs each five monolayers thick separated by an fcc-Cu1−xNix alloy
spacer: (i) Cu0.75Ni0.25 (full line); (ii) Cu0.85Ni0.15 (dashed line); (iii) Cu0.9Ni0.1 (dashed–dotted
line); and (iv) an ideal Cu spacer (dotted line).

The dependence of̄Ex on the spacer thicknessN is illustrated in figure 3 for the case of
two semi-infinite Co(001) slabs sandwiching Cu0.75Ni0.25, Cu0.5Zn0.5, and Cu0.5Au0.5 alloy
spacers. An increase of the coupling period is clearly seen for Cu0.5Zn0.5, while the reduction
for a Cu0.75Ni0.25 spacer is less pronounced. The period of oscillations for a Cu0.5Au0.5 alloy
spacer remains essentially unchanged. From figure 3 one can also see that the Cu1−xNix
and Cu1−xAux alloy spacers exhibit an RKKY-like behaviour with the amplitudes being
proportional toN−2—however, with values reduced in comparison to those for the ideal Cu
spacer. This reduction is particularly pronounced for a Cu0.75Ni0.25 spacer (see figure 1).
An approximate RKKY-like behaviour with a weak exponential damping≈ exp(−0.04N)

was found for Cu0.5Zn0.5.
Detailed understanding of the concentration dependence of amplitudes of oscillations is

still lacking. Adopting an RKKY-like picture, the SPO and the LPO periods are connected via
so-called stationary points [8] located in different parts of the surface Brillouin zone. Quite
probably, the different influence of alloying on the amplitudes of the SPO and the LPO [5]
is connected with the anisotropy of electron–impurity scattering at the alloy Fermi level. Such
information can be obtained,e.g., from the spectral densities corresponding to stationary points.
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Figure 2. Composition dependence of the coupling periods at T = 0 K for two Co(001) slabs each
five monolayers (MLs) thick separated by an fcc-Cu1−xMx alloy spacer: (i) M = Ni (bullets);
(ii) M = Au (squares); and (iii) M = Zn (diamonds). The lines serves as a guide for the eye
and distinguish between short-period (full lines) and long-period (dotted lines) oscillations. Open
circles for Cu0.75Ni0.25 and Cu0.5Au0.5 represent the approximate virtual-crystal values. The
periods are given in MLs.

3.3. Alloying in magnetic layers

Further insight into the physical nature of the IEC can be obtained by studying the
variation of the phases of oscillations with respect to the concentration in alloyed magnetic
subsystems. A first experimental study of this kind for fcc (001) sputtered Fe–Co–Ni/Cu
multilayers [19] was significantly improved by preparing and measuring multiple MBE-grown
sandwiches on the same single-crystal substrate [20]. We consider symmetric systems,
A1−xBx/Cu/A1−xBx (001), as well as asymmetric systems, A1−xBx/Cu/M(001) and
M′/Cu/M(001), where A1−xBx = Fe1−xCox, Co1−xNix, Fe1−xNix , and M, M′ = Co, Fe,
Ni (M 
= M′). Alloying Co with Ni (Fe) increases (decreases) the average number of valence
electron Nel of the ferromagnetic layers. As is well known, by studying Fe–Ni alloys one can
make use of the fact that certain compositions have the same Nel as in suitably chosen Co–Ni or
Fe–Co systems. The role of a particular constituent as well as of Nel can thus be investigated.
Finally, a study of asymmetric arrangements allows one to verify in detail predictions of an
RKKY-like formulation of the IEC [8].
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Figure 3. Exchange coupling N2Ēx(N) at T = 0 K as a function of the spacer thickness N

for two semi-infinite Co(001) subsystems sandwiching a spacer of (from bottom to top) ideal Cu,
Cu0.75Ni0.25 (multiplied by a factor of 5), Cu0.5Zn0.5, and Cu0.5Au0.5. Diamonds refer to the
calculated values; the full line (Fourier back-transform) serves as a guide to the eye.

In figure 4 two symmetric alloyed magnetic layers, namely Co50Ni50 and Fe50Co50 layers,
are compared with a reference case of ideal Co(001) layers. The results confirm qualitative
predictions in terms of an RKKY-like formulation of the IEC: the dominant SPO of 2.53 MLs
is unaffected by alloying in the ferromagnetic layers [8]. The suppression of the amplitude of
oscillations, pronounced in the Co50Ni50 case and rather weak for Fe50Co50 layers, is evident.
The change of the phase of the oscillations due to alloying in the ferromagnetic layers can also
be deduced from figure 4. In both the ideal and the alloyed case, the so-called pre-asymptotic
behaviour is limited to the first 10 or 15 layers. This has to be kept in mind when making
a detailed comparison with experiment, since experimentally the amplitudes and the phases
are determined from the first antiferromagnetic peaks [20] rather than from the asymptotic
behaviour as in the present approach.

A summary of the concentration dependence of the phases of the oscillations for Co–
Ni, Fe–Co, and Fe–Ni layers is presented in figure 5. The following conclusions can be
drawn:

(i) in full agreement with experiments for fcc (001) faces [20], we observe a monotonic
change of the phase with Nel ;

(ii) the estimated average phase variations of 0.56, 0.63, and 1.81 π/electron for Fe–Co,
Fe–Ni, and Co–Ni layers, respectively, should be compared to 0.65 π/electron found
experimentally as an average from Co, Co50Ni50, and Fe60Ni40 values [20]; and

(iii) for the same Nel the phases of the Fe–Ni layers agree very well with corresponding phases
of Co–Ni and Fe–Co layers.
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Figure 4. Exchange coupling N2Ēx(N) as a function of the spacer thickness N for three different
semi-infinite magnetic slabs separated by an fcc-Cu spacer. Diamonds refer to calculated values;
the full lines (Fourier back-transform) serve as a guide to the eye.

The pronounced dependence of the phases on Nel and their insensitivity to the specific
elements which form the ferromagnetic layers can be explained qualitatively on the basis of a
simplified RKKY-like formulation which relates (within a free-electron picture) the amplitudes
and phases to the wave vector of the spin-down transmitted wave in the ferromagnet, or,
equivalently, to its electron density [8]. It should be noted that the alloys studied are strong
ferromagnets with nearly filled spin-up bands. The changes of Nel caused by alloying are thus
mostly at the cost of filling (emptying) of spin-down bands. Within the free-electron picture
the calculated opposite phase shifts for alloyed Co layers with elements having a higher (Ni) or
lower (Fe) number of valence electrons as well as the observed insensitivity to the type of the
atoms which form the ferromagnetic layers can thus be qualitatively understood. Deviations
from the simple RKKY picture reflect the differences between a realistic electronic structure
and a free-electron model at the Fermi energy. The assertion of insensitivity of the phases of
oscillations to the atom type in the magnetic layers can further be supported by calculations
for ternary FexCoyNiz magnetic layers, e.g., for the case x = y = z = 1/3 with Nel = 9.
The calculated phase again compares very well with the corresponding one for Co layers with
the same Nel .

For one dominating period and large enough N , the IEC is given within an RKKY-like
description [8] as

Ex(N) ≈ 1

N2 Im(Ze2π iqN) Z = Z1Z2 Zi =
√

Aie
iϕi (4)

where Zi (i = 1, 2) denote complex amplitudes characterizing magnetic subsystems 1 and 2
(L and R). The wave vectors q are identical, with a relative accuracy 10−3 for all systems
considered. We have used the values of the amplitudes Asym and the phases ϕsym as calculated
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for symmetric systems M/Cu/M(001) and A1−xBx/Cu/A1−xBx (001) in order to find the
complex amplitudes Z

sym
i for the individual subsystems A1−xBx and M as

Z
sym
i =

√
Asym exp(iϕsym/2). (5)

Using these Z
sym
i in (4) for a wide variety of asymmetric systems A1−xBx/Cu/M(001) and

M′/Cu/M(001), we found quite a good agreement with the corresponding ab initio values of
Z. A least-squares fit applied to all data including symmetric and asymmetric systems yields
values of Zi with a r.m.s. error not exceeding 5%. This result represents perhaps the most
complete confirmation of an RKKY-like approach to the IEC for the systems studied as most
of the other existing comparisons concentrate just on the periods of oscillations.
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